A quantum radiation pressure noise-free optical spring
نویسندگان
چکیده
321/5893/1172. [2] S. M. Girvin and F. Marquardt, Physics 2, 40 (2009), URL http://link.aps.org/doi/10.1103/Physics.2.40. [3] M. Aspelmeyer, P. Meystre, and K. Schwab, Physics Today 65, 29 (2012). [4] V. B. Braginsky and F. Y. Khalili, Quantum Measurement (Cambridge University Press, 1992). [5] B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, R. S. Amin, S. B. Anderson, W. G. Anderson, M. A. Arain, et al., Reports on Progress in Physics 72, 076901 (2009), URL http://stacks.iop.org/0034-4885/72/i= 7/a=076901. [6] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Nature 475, 359 (2011), ISSN 0028-0836, URL http://dx.doi.org/10.1038/nature10261. [7] A. D. O’Connell, Nature 464, 697 (2010), URL http://dx. doi.org/10.1038/nature08967. [8] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, Nature 478, 89 (2011). [9] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Science 330, 1520 (2010), http://www.sciencemag.org/content/330/6010/1520.full.pdf, URL http://www.sciencemag.org/content/330/6010/ 1520.abstract. [10] A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Nature 472, 69 (2011). [11] K.-J. Boller, A. Imamolu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991), URL http://link.aps.org/doi/10.1103/ PhysRevLett.66.2593. [12] S. E. Harris, Physics Today 50, 36 (1997), URL http://link. aip.org/link/?PTO/50/36/1. [13] H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, Phys. Rev. D 65, 022002 (2001), URL http:// link.aps.org/doi/10.1103/PhysRevD.65.022002. [14] Y. Ma, S. Danilishin, W. Z. Korth, H. Miao, Y. Chen, and C. Zhao, In preparation (2012). [15] P. R. Saulson, Phys. Rev. D 42, 2437 (1990), URL http:// link.aps.org/doi/10.1103/PhysRevD.42.2437. [16] D. F. McGuigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglass, and H. W. Gutche, Journal of Low Temperature Physics 30, 621 (1978), ISSN 0022-2291, 10.1007/BF00116202, URL http://dx.doi.org/10.1007/ BF00116202. [17] A. Ageev, B. C. Palmer, A. D. Felice, S. D. Penn, and P. R. Saulson, Classical and Quantum Gravity 21, 3887 (2004), URL http://stacks.iop.org/0264-9381/21/i=16/a=004. [18] R. Mihailovich and N. MacDonald, Sensors and Actuators A: Physical 50, 199 (1995), ISSN 0924-4247, URL http://www.sciencedirect.com/science/article/ pii/0924424795010807. [19] G. D. Cole, I. Wilson-Rae, K. Werbach, M. R. Vanner, and M. Aspelmeyer, Nat. Commun. 2, 231 (2011). [20] C. Zener, Phys. Rev. 53, 90 (1938), URL http://link.aps. org/doi/10.1103/PhysRev.53.90. [21] A. Akhiezer, J. Phys. (Moscow) 1, 277 (1939). [22] G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, et al., Classical and Quantum Gravity 19, 897 (2002), URL http://stacks.iop.org/ 0264-9381/19/i=5/a=305. [23] V. Braginsky, M. Gorodetsky, and F. Khalili, Physics Letters A 232, 340 (1997), ISSN 0375-9601, URL http://www.sciencedirect.com/science/article/ pii/S0375960197004131. [24] V. Braginsky and F. Khalili, Physics Letters A 257, 241 (1999), ISSN 0375-9601, URL http://www.sciencedirect.com/ science/article/pii/S0375960199003370. [25] A. Buonanno and Y. Chen, Phys. Rev. D 65, 042001 (2002), URL http://link.aps.org/doi/10.1103/PhysRevD. 65.042001. [26] T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, Phys. Rev. Lett. 98, 150802 (2007), URL http://link.aps.org/doi/10.1103/PhysRevLett.98. 150802. [27] T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, Phys. Rev. Lett. 99, 160801 (2007), URL http://link.aps.org/doi/10. 1103/PhysRevLett.99.160801. [28] D. E. Chang, K.-K. Ni, O. Painter, and H. J. Kimble, New Journal of Physics 14, 045002 (2012), URL http://stacks.iop. org/1367-2630/14/i=4/a=045002. [29] K.-K. Ni, R. Norte, D. J. Wilson, J. D. Hood, D. E. Chang, O. Painter, and H. J. Kimble, Phys. Rev. Lett. 108, 214302 (2012), URL http://link.aps.org/doi/10. 1103/PhysRevLett.108.214302. [30] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Nature 452, 72 (2008). [31] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007), URL http://link.aps.org/ doi/10.1103/PhysRevLett.99.093902. [32] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Phys. Rev. Lett. 99, 093901 (2007), URL http://link.aps. org/doi/10.1103/PhysRevLett.99.093901. [33] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, Phys. Rev. A 77, 033804 (2008), URL http://link.aps. org/doi/10.1103/PhysRevA.77.033804. [34] H. Miao, S. Danilishin, H. Müller-Ebhardt, and Y. Chen, New Journal of Physics 12, 083032 (2010), URL http://stacks. iop.org/1367-2630/12/i=8/a=083032. [35] G. J. Milburn and M. J. Woolley, Acta Physica Slovaca 61, 483 (2011).
منابع مشابه
Towards thermal noise free optomechanics
Thermal noise generally greatly exceeds quantum noise in optomechanical devices unless the mechanical frequency is very high or the thermodynamic temperature is very low. This paper addresses the design concept for a novel optomechanical device capable of ultrahigh quality factors in the audio frequency band with negligible thermal noise. The proposed system consists of a minimally supported mi...
متن کاملLaser-interferometer gravitational-wave optical-spring detectors
Using a quantum mechanical approach, we show that in a gravitationalwave interferometer composed of arm cavities and a signal recycling cavity, e.g., the LIGO-II configuration, the radiation-pressure force acting on the mirrors not only disturbs the motion of the free masses randomly due to quantum fluctuations, but also and more fundamentally, makes them respond to forces as though they were c...
متن کاملSignal recycled laser-interferometer gravitational-wave detectors as optical springs
Using the force-susceptibility formalism of linear quantum measurements, we study the dynamics of signal recycled interferometers, such as LIGO-II. We show that, although the antisymmetric mode of motion of the four arm-cavity mirrors is originally described by a free mass, when the signal-recycling mirror is added to the interferometer, the radiation-pressure force not only disturbs the motion...
متن کاملAn optically trapped mirror for reaching the standard quantum limit
The preparation of a mechanical oscillator driven by quantum back-action is a fundamental requirement to reach the standard quantum limit (SQL) for force measurement, in optomechanical systems. However, thermal fluctuating force generally dominates a disturbance on the oscillator. In the macroscopic scale, an optical linear cavity including a suspended mirror has been used for the weak force me...
متن کاملModulation Response and Relative Intensity Noise Spectra in Quantum Cascade Lasers
Static properties, relatively intensity noise and intensity modulation response in quantum cascade lasers (QCLs) studied theoretically in this paper. The present rate equations model consists of three equations for the electrons density in the conduction band and one equation for photons density in cavity length. Two equations were derived to calculate the noise and modulation response. Calcula...
متن کاملAn all-optical trap for a gram-scale mirror.
We report on a stable optical trap suitable for a macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation pressure. The technique employs two frequency-offset laser fields to simultaneously create a stiff optical restoring force and a viscous optical damping force. We show how these forces may be used to optically trap a free mass without introducing thermal nois...
متن کامل